Academic Areas: Computational Mathematics
Research Interests: Numerical methods for PDEs and engineering problems
Academic Degrees
PhD, 2014, Department of Mathematics, City University of Hong Kong, Hong Kong, China;
Master, 2011, School of Mathematical Sciences, Nankai University, Tianjin, China;
Bachelor, 2008, Department of Applied Mathematics, Dalian University of Technology, Dalian, China.
Professional Experience
Lecturer (2014-now); School of Mathematics and Statistics, Huazhong University of Science and Technology.
Selected Publications
1. Huadong Gao. Optimal error analysis of Galerkin FEMs for nonlinear Joule heating equations. Journal of Scientific Computing. 58 (2014), 627-647.
2. Buyang Li, Huadong Gao, Weiwei Sun. Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations. SIAM Journal on Numerical Analysis. 52 (2014), 933-954.
3. Huadong Gao, Buyang Li, Weiwei Sun. Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity. SIAM Journal on Numerical Analysis.52 (2014), 1183-1202.
4. Huadong Gao. Optimal error estimates of a linearized backward Euler Galerkin FEM for the Landau–Lifshitz equation. SIAM Journal on Numerical Analysis.52(2014),2574-2593.
5. Huadong Gao, Weiwei Sun. An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity. Journal of Computational Physics. 294 (2015), 329-345.
6. Huadong Gao, Unconditional optimal error estimates of BDF-Galerkin FEMs for nonlinear thermistor equations. Journal of Scientific Computing. 66 (2016), 504-527
7. Huadong Gao, Weiwei Sun. A new mixed formulation and efficient numerical solution of Ginzburg-Landau equations under the temporal gauge. SIAM Journal on Scientific Computing. 38(2016),A1339-A1357.
8.Huadong Gao, Buyang Li, Weiwei Sun. Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon. Numerische Mathematik. 136(2017),383-409
9. Huadong Gao. Efficient numerical solution of dynamical Ginzburg-Landau equations under the Lorentz gauge. Communications in Computational Physics, 22(2017),182-201.
10. Huadong Gao,Dongdong He. Linearized Conservative Finite Element Methods for the Nernst-Planck-Poisson Equations. Journal of Scientific Computing, online (2017) DOI: 10.1007/s10915-017-0400-4
Courses Taught
Matrix Theory
Computational Mathematics
Project
National Natural Science Foundation of China:11501227, Efficient numerical
methods for dynamical Ginzburg–Landau equations in superconductivity, 2016/01—2018/12